Assembler Language "Boot Camp"
 Part 1 - Numbers and Basic Arithmetic SHARE 115 in Boston August 1-5, 2010

Introduction

\square Who are we?

- John Ehrman, IBM Software Group
- Dan Greiner, IBM Systems \& Technology Group

Introduction

\square Who are you?

- An applications programmer who needs to write something in mainframe assembler?
- An applications programmer who wants to understand z/Architecture so as to better understand how HLL programs work?
- A manager who needs to have a general understanding of assembler?
\square Our goal is to provide for professionals an introduction to the z/Architecture assembler language

Introduction

-These sessions are based on notes from a course in assembler language at Northern Illinois University
\square The notes are in turn based on the textbook, Assembler Language with ASSIST and ASSIST/I by Ross A Overbeek and W E Singletary, Fourth Edition, published by Macmillan

Introduction

\square The original ASSIST (Assembler System for Student Instruction and Systems Teaching) was written by John Mashey at Penn State University
\square ASSIST/I, the PC version of ASSIST, was written by Bob Baker, Terry Disz and John McCharen at Northern Illinois University

Introduction

\square Both ASSIST and ASSIST/I are in the public domain, and are compatible with the System/370 architecture of about 1975 (fine for beginners)
\square Everything we discuss here works the same in z/Architecture

Both ASSIST and ASSIST/I are available at http://www.kcats.org/assist

Introduction

\square ASSIST-V is also available now, at http://www.kcats.org/assist-v
\square Other materials described in these sessions can be found at the same site, at http://www.kcats.org/share
\square Please keep in mind that ASSIST, ASSIST/I, and ASSIST-V are not supported by Penn State, NIU, NESI, or any of us

Introduction

\square Other references used in the course at NIU:

- Principles of Operation (PoO)
- System/370 Reference Summary
- High Level Assembler Language Reference
\square Access to PoO and HLASM Ref is normally online at the IBM publications web site
\square Students use the S/370 "green card" booklet all the time, including during examinations (SA22-7209)

Our Agenda for the Week

\square Assembler Boot Camp (ABC) Part 1: Numbers and Basic Arithmetic (Self Study)
\square ABC Part 2: Instructions and Addressing (Monday - 11:00 a.m.)
\square ABC Part 3: Assembly and Execution; Branching (Tuesday - 9:30 a.m.)
$\square A B C$ Lab 1: Hands-On Assembler Lab Using ASSIST/I (Tuesday - 6:00 p.m.)

Our Agenda for the Week

\square ABC Part 4: Program Structures; Arithmetic (Wednesday - 9:30 a.m.)
\square ABC Lab 2: Hands-On Assembler Lab Using ASSIST/I (Wednesday - 6:00 p.m.)
$\square A B C$ Part 5: Decimal and Logical Instructions (Thursday - 9:30 a.m.)

Self-Study Agenda

\square Decimal, Binary and Hexadecimal Numbers and Conversions
\square Main Storage Organization and Signed Binary Numbers
\square Integer Arithmetic and Overflow
\quad Getting Started with ASSIST/I

The Big Question:
 "Why Learn Assembler Language?"

"People who are more than casually interested in computers should have at least some idea of what the underlying hardware is like. Otherwise the programs they write will be pretty weird."

Donald E Knuth, The Art of Computer Programming, Preface to Fascicle Number One (MMIX)

Decimal, Binary and Hexadecimal Numbers and Conversions

In Which We Learn to Count

All Over Again

Counting in Bases 10, 2, and 16

$\frac{\text { Dec }}{0}$	$\frac{\text { Bin }}{}$	$\frac{\text { Hex }}{}$		$\frac{\text { Dec }}{8}$	$\frac{\text { Bin }}{1000}$
$\frac{\text { Hex }}{8}$	8				
1	0000	1	9	1001	9
2	0010	2	10	1010	A
3	0011	3	11	1011	B
4	0100	4	12	1100	C
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15	1111	F
			16	10000	10

Why Bother with Binary?

\square Nearly all computers today use binary as the internal "language"

- We need to understand this language to fully understand instructions and data
- Even decimal numbers are represented internally in binary!

Binary numbers can get very long, so we use hexadecimal ("hex") as a shorthand

- A hex digit is simply a group of four binary digits (bits)

Numbers in Different Bases

\square Consider how we write numbers in base 10, using the digits 0-9:

$$
\begin{aligned}
\square 832_{10} & =800_{10}+30_{10}+2_{10} \\
& =8 \times 10^{2}+3 \times 10^{1}+2 \times 10^{0}
\end{aligned}
$$

\square For numbers in base 2 we need only 0 and 1 :

$$
\begin{aligned}
-1101_{2} & =1000_{2}+100_{2}+00+1 \\
& =1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}
\end{aligned}
$$

\square But because it requires less writing, we usually prefer base 16 to base 2

Caution!

\square The value of a number may be ambiguous when the base isn't indicated
$1011=?_{10}$
$1011_{2}=11_{10}$
$1011_{16}=4113_{10}$
\square The base will usually be clear from the context, but will otherwise be provided

Converting Binary \& Hexadecimal to Decimal

```
10112 = 1 < 2 = 1 < 8 = 8
        +0\times2 = 0 < 4 = 0
        +1\times2 = 1 < 2 = 2
        +1\times20}=1\times1=\frac{1}{11
A61 16}=10\times1\mp@subsup{6}{}{2}=10\times256=256
    + 6 < 16 = 6 x 16=96
    + 1\times160}=1\times1=\frac{1}{2657
```

Note: numbers without subscript are base 10

Converting Decimal to Binary \& Hexadecimal

\square To convert a decimal number n to base b

1. Divide n by b, giving quotient q and remainder r
2. Write r as the rightmost digit, or as the digit to the left of the last one written
3. If q is zero, stop; otherwise set $\mathrm{n}=\mathrm{q}$ and go back to Step 1.
\quad Note that each digit will be in the range 0 to b-1

Example: Convert 123_{10} to Base 16

$-123 / 16=7$ with remainder 11 , so the rightmost digit is B (why?)
$\square 7 / 16=0$ with remainder 7 , so the next digit to the left is 7
\square Since quotient is 0 , stop
\square Result is $123_{10}=7 B_{16}$
\square A similar process shows $123_{10}=1111011_{2}$

Conversions Between Bin and Hex

\square These are the easiest of the conversions, since $16=2^{4}$ and we can convert by groups of digits
\square To convert from binary to hexadecimal

1. Starting at the right, separate the digits into groups of four, adding any needed zeros to the left of the leftmost digit so that all groups have four digits
2. Convert each group of four binary digits to a hexadecimal digit

Conversions Between Bin and Hex

\square So to convert 101101 to hex,

1. Group the digits and add zeros: 00101101
2. Convert to hex digits:

2 D
\square To convert from hexadecimal to binary, simply reverse the algorithm
Δ So $2 \mathrm{C} 5_{16}=\begin{array}{ccc}0010 & 1100 & 0101=1011000101_{2} \\ 2 & C & 5\end{array}$

Arithmetic with Unsigned Numbers

\square Addition and subtraction of unsigned numbers is performed in hexadecimal and binary just the same as it is in decimal, with carries and borrows
\square We normally use signed numbers, so we won't dwell on unsigned numbers

Arithmetic with Unsigned Numbers

Arithmetic with Unsigned Numbers

Addition Tables

Base 2						Base 16		
+	0	1	+	0	1	2	E	F
0	10	1	0	0	1	2	E	F
1	\| 1	0+c	1	1	2	3	F	0+c
			2	2	3	4	0+c	1+c
			B	B	C	D	9+c	A+C
			C	C	D	E	A+c	B+C
			D	D	E	F	B+C	$\mathrm{C}+\mathrm{C}$
			E	E	F	0+c	C+c	D+C
			F	F	0+	1+c	D+c	E+C

Arithmetic with Unsigned Numbers

Main Storage Organization and Signed Binary Numbers

Main Storage Organization

\square In order to understand how signed numbers are represented in a binary computer, we need to understand memory organization
\square Abstractly, a binary digit (or bit) can be represented by any 2-state system: on-off, true-false, etc.
\square A computer's memory is simply a collection of billions of such systems implemented using electronic switches

Main Storage Organization

\square Memory is organized by grouping eight bits into a byte, then assigning each byte its own identifying number, or address, starting with zero

Bytes are then aggregated into words (4 bytes), halfwords (2 bytes) and doublewords (8 bytes)

- One byte = eight bits
- One word = four bytes = 32 bits

Main Storage Organization

\square Typically, each of these aggregates is aligned on an address boundary which is evenly divisible by its size in bytes
-So, a word (32 bits) is aligned on a 4-byte boundary (addresses $0,4,8,12,16,20$, etc.)
\square Remember, memory addresses refer to bytes, not bits or words

Representation of Signed Binary Integers

Representing unsigned binary integers was fairly simple, but how can we include a sign?
\square There are three ways we might represent signed integers, using a single bit as the sign (customarily the leftmost bit)

- Signed-magnitude
- Ones' complement
- Two's complement

Representation of Signed Binary Integers

- Signed-magnitude is the most familiar (+17, -391) and we will see later how this is used in z/Architecture
\square Allocating an extra bit for the sign, since $9_{10}=1001_{2}$, we would write
+9 as 01001_{2} and
-9 as 11001_{2}

Representation of Signed Binary Integers

\square The ones' complement of a number is found by replacing each 1 with 0 and each 0 with 1
\square If we use one bit for the sign, then since 9_{10} is 1001_{2}, we would write
+9 as 01001_{2} and
-9 as 10110_{2}

Representation of Signed Binary Integers

\square The two's complement representation is formed by taking the ones' complement and adding 1
\square In this notation, again using one bit for the sign, we write

$$
\begin{aligned}
& +9 \text { as } 01001_{2} \text { and } \\
& -9 \text { as } 10111_{2}
\end{aligned}
$$

Representation of Signed Binary Integers

\square In z/Architecture, a negative binary integer is represented by the two's complement of its positive value
\square Note that zero is its own complement in this representation (no +0 or -0), since:

```
Zero = 00000000 00000000 00000000
00000000
1s Compl = 11111111 11111111 11111111 11111111
Plus 1 = 1
Result = 00000000000000000000000000000000
```


Representation of Signed Binary Integers

- In a 32- bit fullword, signed integers are represented by using the first bit as a sign, followed by 31 bits of significance
sbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb
\square It is also possible to have signed integers represented as 8-bit bytes and 16-bit halfwords as well as 64-bit doublewords

Representation of Signed Binary Integers

\square A fullword can contain non-negative integers (with sign bit $=0$) in the range

$$
0<->+2^{31}-1
$$

Negative integers (with sign bit $=1$) in the range

$$
-2^{31}+1<->-1
$$

are formed by taking the two's complement of the number's absolute value
\square Negative integer -2^{31} is represented by 1000... 0000 or, in hex, 80000000

Representation of Signed Binary Integers: Examples

\square N.B. -2^{31} is not the two's complement of any positive integer
\square In two's complement representation

- +1 = 00000000000000000000000000000001
- - 1 = 11111111111111111111111111111111
- Or, in the more commonly used hexadecimal
- $+1=00000001$
- -1 = FFFFFFFF

Integer Arithmetic and Overflow

Arithmetic with Signed Numbers

\square Let's look at examples of addition and subtraction using signed numbers in two's complement. These examples use only 4 bits, not 32, with the leftmost bit as sign.
$+3=0011$
$\frac{+2}{+5}=\frac{0 \quad 010}{0101}$
$+3=0011$
$\frac{-2}{+1}=\frac{1}{1110} \quad \begin{aligned} & \text { (Two's complement of } 0010) \\ & \text { (The carry out is ignored) }\end{aligned}$

Arithmetic with Signed Numbers

Now, how about -3 plus +2

$$
\begin{aligned}
-3 & =1101 \\
\frac{+2}{-1} & =\frac{0}{1111}
\end{aligned}
$$

\square Notice that the sign is correct each time, and the result is in two's complement notation

Arithmetic with Signed Numbers

\square Subtraction is performed by adding the two's complement of the subtrahend to the minuend. So +3 - +2 $=+3+(-2)$.

Arithmetic with Signed Numbers

\square Computer arithmetic using 32-bit fullwords is a bit more complex, and is always shown in hex. Also, we will no longer display a separate sign bit (it will be part of the leftmost hex digit):

Arithmetic with Signed Numbers

\square Subtraction is performed by adding the two's complement

Carries out of the sign position are ignored (results are correct anyway)

```
F89ABCDE F89ABCDE
-6D4AFBC0 = +92B50440
                            8B4FC11E (is this correct?)
```


Overflow - Why Worry?

\square Internal data is limited in size

- Adding two big numbers can produce a number that is "too big" - then what?
\square The machine records an overflow condition
- Either the Condition Code (CC) is set (more on this later) or a Program Interrupt occurs
- The result often has the wrong sign
- Your programs will probably have to take steps to avoid or handle overflow

Overflow

\square What if two large numbers are added and the result is greater than $2^{31}-1$ (or less than -2^{31})?
\square And how can we tell if this happened?
\square In order to understand this, we will again demonstrate with our very small "words" of four bits, the first of which is the sign
\square These "4-bit words" can handle integers in the range from -8 to $+7(1000$ to 0111$)$

Overflow

\square Now let's see what happens when we try to add +5 to +4 (we'll do this in binary, using our four-bit words).
\square Overflow will occur since the result is greater than +7 .

Overflow

\square Overflow is detected by checking the carry into the sign position and the carry out of the sign position
\square If they are not equal, overflow occurred and the result is invalid.

Overflow

Out In [not equal, so overflow occurred]
1 I
$\begin{array}{rll}\begin{array}{rl}01 & 00\end{array}<-- \text { carries } \\ 0 & 101 & =+5 \\ 0 & 100 & =+4 \\ 1 & 001 & =-7 \text { (invalid due to overflow) }\end{array}$
The program may optionally take action on overflow, but it normally should since the result is invalid

Overflow

\square But be very careful! The mainframe is a binary computer, not hexadecimal, so the check for overflow must be done using the binary representation - that is, we must look at bits, not hex digits
\square So, if we add as follows...

	1111
D13BCF24	$\mathrm{D}=1101$
+F3C12B97	$\mathrm{F}=1111$
	1100

Getting Started With

 ASSIST/I
ASSIST/l Features

\square ASSIST/l is an integrated assembler and instruction interpreter, plus a text editor and interactive debugger

There are built-in functions (X-instructions) for I/O and data conversion
\quad Program tracing lets you watch "everything" happen

ASSIST/I Features

-It is a useful tool for getting started and "tinkering" on a PC without needing any host-system access
\square A User Guide is included in the "Starter Kit" handout
\square And it's free!

ASSIST/I Limitations

\square ASSIST/I supports only an older, less-rich instruction set
\square Modern assembler features are missing
\square Programming style may be less robust than desired

ASSIST/I Limitations

\square Text editor functions are rather awkward

- It may be easier to use a simple PC editor such as Notepad
\square System macros aren't available

Getting Started with ASSIST/I

Easiest: run everything from the CD or hard drive

- Change your disk drive to D: (or other appropriate drive letter) and your working directory to \BootAsst\}
- Enter CAS, and follow the prompts to run program DEMOA.ASM
- Later, we'll step through its execution and show how to create a .PRT file
\quad Try some of the other DEMO programs

